Topic 12-Power series solutions of ODEs

Topic 12 - Power series
solutions to DDEs
Def: We say that a function

$$f(x)$$
 is analytic at xo if
it has a power series
 $f(x) = \sum_{n=0}^{\infty} a_n(x-x_0)^n$
centered at xo with
possitive radius of
convergence $r > 0$.
 $\Gamma = \infty$ is allowed.]
diverges converges diverges
 $HHHH HHHHHHHH$

 $E_X: X_0=0$ $Sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots$ $\Gamma = \infty$ has radius uf convergence Su, sin(x) is analytic at $X_0 = 0$

 $E_X: X_o = |$ $\frac{1}{x} = \left[-(x-1) + (x-1)^2 - (x-1)^3 + \dots \right]$ has radius of convergence r=1. Thus, I is analytic at xo=1.

 $E_X: X_0 = Z$ $X^{2} = 4 + 4(x-2) + (x-2)^{2}$] last week

has radius of convergence
$$\Gamma = \infty$$

Thus, χ^2 is analytic at $\chi_0 = 2$

 E_{X} : $\chi^2 - 5\chi + 2$ is analytic for all X. It's a polynomial.

Main Theorem
Consider either of the
initial value problems:

$$y' + a_0(x)y = b(x)$$

 $y(x_0) = y_0$
OR
 $y'' + a_1(x)y' + a_0(x)y = b(x)$
 $y'(x_0) = y'_0$, $y(x_0) = y_0$
In either case, if the $a_1(x)$
and $b(x)$ are analytic at x_0
then there exists a unique
solution to the initial-value problem of the firm
 $y(x) = \sum_{n=0}^{\infty} a_n(x-x_0)^n$
centered at x_0 .

turthermore, the radius of convergence r>0 for the power series of the solution Y(x) is at least the smallest radius of convergence from amongst the power series of the ai(x) and b(x).

Then the solution will have radius of convergence at least r = 2.

Ex: Let's find a power
series solution to

$$y'-2xy = 0$$

 $y(0) = 1$
 $y'-2xy = 0$
 $y(0) = 1$
 $y'-2xy = 0$
 $y'-2x = 0$
 $y'-2$

We need to find
$$y^{(n)}(o)$$
 for $n \ge 0$.
Given:
 $y'-2xy=0$
 $y(o)=1$
So, $y(0)=1$
And, $y'(o)=z[0][y(o)]=z[0][1]=0$
So, $y'(o)=0$
Differentiate $y'=2xy$ with
respect to x to yet :
 $y''=2y+2xy'$
 $(fg)'=f'g+fg'$
So,

$$y''(o) = 2[y(o)] + 2(o)[y'(o)]$$

= 2[1] + 2(o)(0)
= 2.
So, $y''(o) = 2$
Differentiate $y'' = 2y + 2xy'$ to get
 $y''' = 2y' + 2y' + 2xy''$
 $y''' = 4y' + 2xy''$
So,
 $y'''(0) = 4[y'(o)] + 2(o)[y''(o)]$
= 4(0) + 2(o)(2)
= 0
Thus, $y'''(o) = 0$

Differentiate
$$y''' = 4y' + 2xy'' + y = 9et$$

 $y'''' = 4y'' + 2y'' + 2xy'''$
 $= 6y'' + 2xy'''$
So,
 $y''''(0) = 6[y''(0)] + 2(0)[y'''(0)]$
 $= 6(2) + 2(0)(0)$
 $= 12$
Thus, $y''''(0) = 12$
So,
 $y(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^{2}$
 $+ \frac{y'''(0)}{3!}x^{3} + \frac{y'''(0)}{4!}x^{4} + \cdots$

$$y(x) = 1 + 0x + \frac{2}{2!}x^{2} + \frac{0}{3!}x^{3} + \frac{12}{4!}x^{4} + \dots$$

$$y(x) = 1 + x^{2} + \frac{1}{2}x^{4} + \dots$$
With radius of convergence $r = \infty$
Side note) Using typic 3,
you can show
$$y(x) = e^{x^{2}} = 1 + x^{2} + \frac{1}{2}x^{4} + \frac{1}{6}x^{6} + \dots$$

$$e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \dots$$

$$\frac{(\text{vefficients})}{x^2 = 1 + z(x-1) + (x-1)^2 + 0(x-1)^3 + \cdots} r = 0$$

-(x-1) = 0 - 1. (x-1) + 0(x-1)^2 + 0(x-1)^3 + \cdots r = 1
(n(x) = -(x-1) + \frac{1}{2}(x-1)^2 + \cdots r = 1

So we can find a solution $y(x) = y(1) + y'(1)(x-1) + \frac{y''(1)}{z!}(x-1)^{2}$ $+ \frac{y'''(1)}{3!}(x-1)^{3} + \dots$

with radius of convergence
is at least
$$r = 1$$
.

We have

$$y(1) = 0$$

 $y'(1) = 0$

and

$$y'' = ln(x) - x^{2}y' + (x - 1)y$$

$$y''(1) = ln(1) - (1)^{2} [y'(1)] + (1 - 1) [y(1)]$$

$$= 0 - (1) [0] + (0) [0]$$

$$= 0$$

$$So_{j}$$

$$y''(1) = 0$$

Differentiating above we get

$$y''' = \frac{1}{x} - 2xy' - x^{2}y'' + (1)y + (x - 1)y''$$

$$y'''(1) = \frac{1}{1} + 2(1)[y'(1)] - (1)^{2}[y''(1]] + y(1) + (1 - 1)[y'(0)]$$

$$= 1 + 2(1)[0] - (1)[0] + 0 + (0)(0)$$

$$= 1$$
Thus, $y'''(1) = 1$
One can calculate that
$$y''''(1) = -3$$
Thus,
$$y'''(1) = -3$$

 $y(x) = y(1) + y'(1)(x-1) + \frac{y(1)}{2!}(x-1)$

$$\frac{y^{(1)}(1)}{3!} (x-1)^{3} + \frac{y^{(1)}(1)}{4!} (x-1)^{4} + \frac{1}{3!} (x-1)^{3} + \frac{y^{(1)}(1)}{4!} (x-1)^{4} + \frac{1}{3!} (x-1)^{3} - \frac{3}{4!} (x-1)^{4} + \frac{1}{3!} (x-1)^{3} - \frac{3}{4!} (x-1)^{4} + \frac{1}{4!} + \frac$$